Part Number Hot Search : 
C320A IRFV460 AD9773 LTC1144I LTC1144I 4ACT1 75N06 DG411DY
Product Description
Full Text Search
 

To Download IRG4IBC30UDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD- 95598
IRG4IBC30UDPBF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
* 2.5kV, 60s insulation voltage * 4.8 mm creapage distance to heatsink * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes * Tighter parameter distribution * Industry standard Isolated TO-220 FullpakTM outline * Lead-Free
C
UltraFast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.95V
@VGE = 15V, IC = 12A
n-channel
Benefits
* Simplified assembly * Highest efficiency and power density * HEXFREDTM antiparallel Diode minimizes switching losses and EMI
TO-220 FULLP AK
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM Visol VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 17 8.9 92 92 8.5 92 2500 20 45 18 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Units
V
A
V W C
Thermal Resistance
Parameter
RJC RJC RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight
Typ.
--- --- --- 2.0 (0.07)
Max.
2.8 4.1 65 ---
Units
C/W g (oz)
www.irf.com
1
7/27/04
IRG4IBC30UDPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES Parameter Collector-to-Emitter Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage Min. 600 --- --- --- --- Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage --- Forward Transconductance 3.1 Zero Gate Voltage Collector Current --- --- Diode Forward Voltage Drop --- --- Gate-to-Emitter Leakage Current --- Typ. --- 0.63 1.95 2.52 2.09 --- -11 8.6 --- --- 1.4 1.3 --- Max. Units Conditions --- V VGE = 0V, IC = 250A --- V/C VGE = 0V, IC = 1.0mA 2.1 IC = 12A VGE = 15V --- V IC = 23A See Fig. 2, 5 --- IC = 12A, TJ = 150C 6.0 VCE = VGE, IC = 250A --- mV/C VCE = VGE, IC = 250A --- S VCE = 100V, IC = 12A 250 A VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150C 100 nA VGE = 20V
VGE(th)
VGE(th)/TJ
gfe ICES VFM IGES
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M /dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. 50 8.1 18 40 21 91 80 0.38 0.16 0.54 40 22 120 180 0.89 7.5 1100 73 14 42 80 3.5 5.6 80 220 180 120 Max. Units Conditions 75 IC = 12A 12 nC VCC = 400V See Fig. 8 27 VGE = 15V --- TJ = 25C --- ns IC = 12A, VCC = 480V 140 VGE = 15V, RG = 23 130 Energy losses include "tail" and --- diode reverse recovery. --- mJ See Fig. 9, 10, 11, 18 0.9 --- TJ = 150C, See Fig. 9, 10, 11, 18 --- ns IC = 12A, VCC = 480V --- VGE = 15V, RG = 23 --- Energy losses include "tail" and --- mJ diode reverse recovery. --- nH Measured 5mm from package --- VGE = 0V --- pF VCC = 30V See Fig. 7 --- = 1.0MHz 60 ns TJ = 25C See Fig. 120 TJ = 125C 14 IF = 12A 6.0 A TJ = 25C See Fig. 10 TJ = 125C 15 VR = 200V 180 nC TJ = 25C See Fig. 600 TJ = 125C 16 di/dt 200A/s --- A/s TJ = 25C See Fig. --- TJ = 125C 17
2
www.irf.com
IRG4IBC30UDPBF
12
For both:
10
LOAD CURRENT (A)
Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified
Power Dissipation = 13 W
8
Square wave: 60% of rated voltage
I
6
4
Ideal diodes
2
0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
IC , Collector-to-Emitter Current (A)
TJ = 25C TJ = 150C
10
IC , Collector-to-Emitter Current (A)
TJ = 150C
10
TJ = 25C
1
1
0.1 0.1 1
VGE = 15V 20s PULSE WIDTH A
10
0.1 5 6 7 8
V CC = 10V 5s PULSE WIDTH A
9 10 11 12
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4IBC30UDPBF
20
3.0
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current(A)
V GE = 15V 80s PULSE WIDTH
IC = 24A
16
2.5
12
8
IC = 12A
2.0
4
I C = 6.0A
A
-60 -40 -20 0 20 40 60 80 100 120 140 160
0
25
50
75
100
125
150
1.5
TC , Case Temperature ( C)
TJ , Junction Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 PDM t1 t2
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30UDPBF
2000
C, Capacitance (pF)
1600
VGE , Gate-to-Emitter Voltage (V)
A
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
VCE = 400V I C = 12A
16
Cies
1200
12
800
Coes Cres
8
400
4
0 1 10
0 0 10 20 30 40
A
50
100
VCE, Collector-to-Emitter Voltage (V)
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.60
10
Total Switchig Losses (mJ)
0.58
Total Switchig Losses (mJ)
V CC = 480V V GE = 15V T J = 25C I C = 12A
R G = 23 V GE = 15V V CC = 480V I C = 24A
0.56
1
I C = 12A I C = 6.0A
0.54
0.52
0.50 0 10 20 30 40 50
A
60
0.1 -60 -40 -20 0 20 40 60 80
A 100 120 140 160
R G, Gate Resistance ( )
TJ , Junction Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4IBC30UDPBF
2.0
Total Switchig Losses (mJ)
1.2
I C , Collector Current (A)
1.6
R G = 23 T J = 150C V CC = 480V V GE = 15V
1000
VGE = 20V T J = 125 oC
100
10
0.8
1
0.4
0.0 0 10 20
A 30
0.1
SAFE OPERATING AREA
1 10 100 1000
IC , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
TJ = 150C
10
TJ = 125C TJ = 25C
1 0.4
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30UDPBF
160 100
VR = 200V TJ = 125C TJ = 25C
120
VR = 200V TJ = 125C TJ = 25C
I F = 24A I F = 12A
80
I IRRM - (A)
I F = 24A
10
t rr - (ns)
I F = 12A IF = 6.0A
I F = 6.0A
40
0 100
di f /dt - (A/s)
1000
1 100
di f /dt - (A/s)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
600
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
VR = 200V TJ = 125C TJ = 25C
VR = 200V TJ = 125C TJ = 25C
400
di(rec)M/dt - (A/s)
1000
Q RR - (nC)
IF = 6.0A
I F = 24A
200
I F = 12A
I F = 12A
100
IF = 6.0A
IF = 24A
0 100
di f /dt - (A/s)
1000
10 100
di f /dt - (A/s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4IBC30UDPBF
Same type device as D.U.T.
90%
80% of Vce
430F D.U.T.
Vge
V C
10% 90%
td(off)
10% IC 5%
t d(on)
tr
tf t=5s Eon Ets= (E +Eoff ) on Eoff
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
Ic
trr
Qrr =
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd id dt t3
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4IBC30UDPBF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000F 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4IBC30UDPBF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG = 23 (figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot. t = 60s, f = 60Hz
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E X AM P L E : T H IS IS AN IR F I8 4 0 G W IT H AS S E M B L Y L OT COD E 3 4 3 2 AS S E M B L E D ON W W 2 4 1 9 9 9 IN T H E AS S E M B L Y L IN E "K " IN T E R N AT ION AL R E C T IF IE R L OGO AS S E M B L Y L OT C OD E P AR T N U M B E R
IR F I8 4 0 G 924K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
D AT E C O D E Y E AR 9 = 1 9 9 9 W E E K 24 L IN E K
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04
10
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRG4IBC30UDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X